25,837 research outputs found

    Black-box Hamiltonian simulation and unitary implementation

    Full text link
    We present general methods for simulating black-box Hamiltonians using quantum walks. These techniques have two main applications: simulating sparse Hamiltonians and implementing black-box unitary operations. In particular, we give the best known simulation of sparse Hamiltonians with constant precision. Our method has complexity linear in both the sparseness D (the maximum number of nonzero elements in a column) and the evolution time t, whereas previous methods had complexity scaling as D^4 and were superlinear in t. We also consider the task of implementing an arbitrary unitary operation given a black-box description of its matrix elements. Whereas standard methods for performing an explicitly specified N x N unitary operation use O(N^2) elementary gates, we show that a black-box unitary can be performed with bounded error using O(N^{2/3} (log log N)^{4/3}) queries to its matrix elements. In fact, except for pathological cases, it appears that most unitaries can be performed with only O(sqrt{N}) queries, which is optimal.Comment: 19 pages, 3 figures, minor correction

    Statistical Properties of Many Particle Eigenfunctions

    Full text link
    Wavefunction correlations and density matrices for few or many particles are derived from the properties of semiclassical energy Green functions. Universal features of fixed energy (microcanonical) random wavefunction correlation functions appear which reflect the emergence of the canonical ensemble as the number of particles approaches infinity. This arises through a little known asymptotic limit of Bessel functions. Constraints due to symmetries, boundaries, and collisions between particles can be included.Comment: 13 pages, 4 figure

    Stochastic Heisenberg limit: Optimal estimation of a fluctuating phase

    Get PDF
    The ultimate limits to estimating a fluctuating phase imposed on an optical beam can be found using the recently derived continuous quantum Cramer-Rao bound. For Gaussian stationary statistics, and a phase spectrum scaling asymptotically as 1/omega^p with p>1, the minimum mean-square error in any (single-time) phase estimate scales as N^{-2(p-1)/(p+1)}, where N is the photon flux. This gives the usual Heisenberg limit for a constant phase (as the limit p--> infinity) and provides a stochastic Heisenberg limit for fluctuating phases. For p=2 (Brownian motion), this limit can be attained by phase tracking.Comment: 5+4 pages, to appear in Physical Review Letter

    Hamiltonian simulation with nearly optimal dependence on all parameters

    Full text link
    We present an algorithm for sparse Hamiltonian simulation whose complexity is optimal (up to log factors) as a function of all parameters of interest. Previous algorithms had optimal or near-optimal scaling in some parameters at the cost of poor scaling in others. Hamiltonian simulation via a quantum walk has optimal dependence on the sparsity at the expense of poor scaling in the allowed error. In contrast, an approach based on fractional-query simulation provides optimal scaling in the error at the expense of poor scaling in the sparsity. Here we combine the two approaches, achieving the best features of both. By implementing a linear combination of quantum walk steps with coefficients given by Bessel functions, our algorithm's complexity (as measured by the number of queries and 2-qubit gates) is logarithmic in the inverse error, and nearly linear in the product τ\tau of the evolution time, the sparsity, and the magnitude of the largest entry of the Hamiltonian. Our dependence on the error is optimal, and we prove a new lower bound showing that no algorithm can have sublinear dependence on τ\tau.Comment: 21 pages, corrects minor error in Lemma 7 in FOCS versio

    Adaptive Quantum Measurements of a Continuously Varying Phase

    Get PDF
    We analyze the problem of quantum-limited estimation of a stochastically varying phase of a continuous beam (rather than a pulse) of the electromagnetic field. We consider both non-adaptive and adaptive measurements, and both dyne detection (using a local oscillator) and interferometric detection. We take the phase variation to be \dot\phi = \sqrt{\kappa}\xi(t), where \xi(t) is \delta-correlated Gaussian noise. For a beam of power P, the important dimensionless parameter is N=P/\hbar\omega\kappa, the number of photons per coherence time. For the case of dyne detection, both continuous-wave (cw) coherent beams and cw (broadband) squeezed beams are considered. For a coherent beam a simple feedback scheme gives good results, with a phase variance \simeq N^{-1/2}/2. This is \sqrt{2} times smaller than that achievable by nonadaptive (heterodyne) detection. For a squeezed beam a more accurate feedback scheme gives a variance scaling as N^{-2/3}, compared to N^{-1/2} for heterodyne detection. For the case of interferometry only a coherent input into one port is considered. The locally optimal feedback scheme is identified, and it is shown to give a variance scaling as N^{-1/2}. It offers a significant improvement over nonadaptive interferometry only for N of order unity.Comment: 11 pages, 6 figures, journal versio

    Surprises in the suddenly-expanded infinite well

    Full text link
    I study the time-evolution of a particle prepared in the ground state of an infinite well after the latter is suddenly expanded. It turns out that the probability density Ψ(x,t)2|\Psi(x, t)|^{2} shows up quite a surprising behaviour: for definite times, {\it plateaux} appear for which Ψ(x,t)2|\Psi(x, t)|^{2} is constant on finite intervals for xx. Elements of theoretical explanation are given by analyzing the singular component of the second derivative xxΨ(x,t)\partial_{xx}\Psi(x, t). Analytical closed expressions are obtained for some specific times, which easily allow to show that, at these times, the density organizes itself into regular patterns provided the size of the box in large enough; more, above some critical time-dependent size, the density patterns are independent of the expansion parameter. It is seen how the density at these times simply results from a construction game with definite rules acting on the pieces of the initial density.Comment: 24 pages, 14 figure

    Superconductor-proximity effect in chaotic and integrable billiards

    Get PDF
    We explore the effects of the proximity to a superconductor on the level density of a billiard for the two extreme cases that the classical motion in the billiard is chaotic or integrable. In zero magnetic field and for a uniform phase in the superconductor, a chaotic billiard has an excitation gap equal to the Thouless energy. In contrast, an integrable (rectangular or circular) billiard has a reduced density of states near the Fermi level, but no gap. We present numerical calculations for both cases in support of our analytical results. For the chaotic case, we calculate how the gap closes as a function of magnetic field or phase difference.Comment: 4 pages, RevTeX, 2 Encapsulated Postscript figures. To be published by Physica Scripta in the proceedings of the "17th Nordic Semiconductor Meeting", held in Trondheim, June 199

    The quantum Bell-Ziv-Zakai bounds and Heisenberg limits for waveform estimation

    Get PDF
    We propose quantum versions of the Bell-Ziv-Zakai lower bounds on the error in multiparameter estimation. As an application we consider measurement of a time-varying optical phase signal with stationary Gaussian prior statistics and a power law spectrum 1/ωp\sim 1/|\omega|^p, with p>1p>1. With no other assumptions, we show that the mean-square error has a lower bound scaling as 1/N2(p1)/(p+1)1/{\cal N}^{2(p-1)/(p+1)}, where N{\cal N} is the time-averaged mean photon flux. Moreover, we show that this accuracy is achievable by sampling and interpolation, for any p>1p>1. This bound is thus a rigorous generalization of the Heisenberg limit, for measurement of a single unknown optical phase, to a stochastically varying optical phase.Comment: 18 pages, 6 figures, comments welcom

    Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates

    Get PDF
    The ultimate bound to the accuracy of phase estimates is often assumed to be given by the Heisenberg limit. Recent work seemed to indicate that this bound can be violated, yielding measurements with much higher accuracy than was previously expected. The Heisenberg limit can be restored as a rigorous bound to the accuracy provided one considers the accuracy averaged over the possible values of the unknown phase, as we have recently shown [Phys. Rev. A 85, 041802(R) (2012)]. Here we present an expanded proof of this result together with a number of additional results, including the proof of a previously conjectured stronger bound in the asymptotic limit. Other measures of the accuracy are examined, as well as other restrictions on the generator of the phase shifts. We provide expanded numerical results for the minimum error and asymptotic expansions. The significance of the results claiming violation of the Heisenberg limit is assessed, followed by a detailed discussion of the limitations of the Cramer-Rao bound.Comment: 22 pages, 4 figure

    Calculation of the Aharonov-Bohm wave function

    Full text link
    A calculation of the Aharonov-Bohm wave function is presented. The result is a series of confluent hypergeometric functions which is finite at the forward direction.Comment: 12 pages in LaTeX, and 3 PostScript figure
    corecore